DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH

Research Conducted and Supported by the National Institutes of Health (NIH) in Addressing Zika Virus Disease

Testimony before the

House Committee on Energy and Commerce Subcommittee on Oversight and Investigations

Anthony S. Fauci, M.D.

Director

National Institute of Allergy and Infectious Diseases National Institutes of Health

March 2, 2016

Mr. Chairman, Ranking Member DeGette, and Members of the Subcommittee:

Thank you for the opportunity to discuss the National Institutes of Health (NIH) research response to Zika virus, an emerging public health threat of international concern. I direct the National Institute of Allergy and Infectious Diseases (NIAID), the lead NIH institute for conducting and supporting research on emerging and re-emerging infectious diseases, including those caused by flaviviruses such as Zika virus.

The Administration is taking appropriate action to protect the American people and, as you know, it announced a request to Congress for approximately \$1.9 billion in emergency funding to enhance ongoing efforts to prepare for and respond to outbreaks of the Zika virus, both domestically and internationally. This includes funding for work on the development of vaccines and diagnostics and to improve scientific understanding of the disease.

The overarching mission of NIAID is to conduct and support research to better understand, treat, and prevent infectious and immunologic diseases. This is accomplished through a spectrum of research, from basic studies of the mechanisms of disease to applied research focused on developing interventions such as diagnostics, therapeutics, and vaccines. As part of this mission, NIAID has a dual mandate encompassing both research on ongoing public health issues and the capability to respond rapidly to newly emerging and re-emerging infections such as Zika virus.

These emerging and re-emerging disease threats, whether man-made or naturally occurring, are perpetual challenges, in part due to the capacity of microbial pathogens to evolve rapidly and adapt to new ecological niches. To address the challenges posed by emerging infectious diseases, NIAID employs both targeted, disease-specific research as well as broadspectrum approaches. NIAID maximizes its efforts by prioritizing the development of drugs

1

effective against multiple bacteria or viruses, and "platform" technologies to facilitate rapid development of vaccines and diagnostics applicable to multiple infections.

NIAID is well-positioned to rapidly respond to infectious disease threats as they emerge by leveraging fundamental, basic research efforts; domestic and international research infrastructure that can be quickly mobilized; and productive partnerships with industry. NIAID provides preclinical research resources to scientists in academia and private industry worldwide to advance translational research against emerging and re-emerging infectious diseases. These resources are designed to bridge gaps in the product development pipeline and lower the scientific, technical, and financial risks incurred by industry in order to incentivize them to partner with us in the advanced development of effective countermeasures. NIAID also supports our Vaccine and Treatment Evaluation Units (VTEO.553snnd -6(e)4(spo3(a)4((rc)7(h re)4()tw-9(usrk TJETBT prevalence of these vectors. Other well-known flaviviruses include dengue virus and yellow fever virus; like Zika virus they are transmitted by *Aedes* mosquitoes. Zika virus was discovered in monkeys in Uganda in 1947 and is now endemic to Africa and Southeast Asia. During the past decade it has emerged in other areas of the world, including Oceania, the Caribbean, and Central and South America, where countries, notably Brazil, are currently experiencing unprecedented Zika transmission.

Infections caused by Zika virus are usually asymptomatic

difficult to distinguish by antibody screening tests from other mosquito-borne infections such as dengue, malaria, and chikungunya. Moreover, current antibody screening tests can be falsely positive or inconclusive In January 2016, NIAID issued a notice to researchers highlighting NIH's interest in supporting research and product development to combat Zika virus. Areas of high priority include basic research to understand viral replication, pathogenesis, and transmission, as well as

confirmatory testing is required. This is a particular concern in South America where there is a high level of exposure to other flaviviruses, particularly dengue virus.

To facilitate the development of improved Zika virus diagnostic tests, NIAID grantees are working to generate antibodies that can distinguish between Zika virus and dengue virus. They also are working to identify biosignatures unique to Zika infection that could form the basis of additional rapid, specific, and sensitive diagnostic tests. In addition, NIAID is pursuing the development of a mouse model of Zika virus infection that could be used to test new diagnostic

tests for Zika virus. The funding will allow NIH to build upon existing resources and work to develop a vaccine for Zika virus and the chikungunya virus, which is spread by the same type of mosquito. Funding will accelerate this work and improve scientific understanding of the disease to inform the development of additional tools to combat it. The request also includes resources for FDA to support Zika virus medical product development, including the next-generation diagnostic devices. We look forward to working with the Congress to implement this request.

COLLABORATIONS

Investigation of emerging and re-emerging infectious diseases requires expertise from a variety of fields. In the case of Zika virus, studies of virology, immunology, natural history, neurology, and neonatology will be required to fully understand the pathogenesis of this infection. As mentioned previously, NIAID is partnering with other NIH institutes including NICHD and NINDS to better understand the potential association between Zika virus infection and neonatal defects, particularly microcephaly.

NIAID also is employing partnerships with research institutions in South America to advance research on Zika virus infection; additional collaborations with academic, industry, and government partners are under active exploration. NIAID held a joint meeting in December 2015 with Brazilian research institute Fiocruz in which Zika was a key area of concentration. In addition, NIAID is collaborating with other HHS agencies in responding to the Zika epidemic. For example, NIAID, CDC, BARDA, ASPR, and FDA are jointly convening a Zika virus workshop on March 28-29, 2016, where the latest information on Zika virus will be discussed by experts from Federal Agencies, academia, and pharmaceutical and biotechnology

9

companies. Topics to be addressed at the workshop include virology, epidemiology, possible links to microcephaly, and efforts to develop diagnostics, therapeutics, and vaccines.

CONCLUSION

NIH is committed to continued collaboration with HHS agencies and other partners across the U.S. government in advancing research to address Zika virus infection, and we look forward to working with the Congress to implement the President's emergency funding request. As part of its mission to respond rapidly to emerging and re-emerging infectious diseases throughout the world, NIAID is expanding our efforts to elucidate the biology of Zika virus and employ this knowledge to develop needed tools to diagnose, treat, and prevent disease caused by this virus. In particular, NIAID will pursue the development of safe, effective vaccines to prevent disease caused by Zika and chikungunya viruses.